Quantcast
I Tried to Hack My Circadian Rhythm With a Bright Light Therapy Headset

Some things are worth looking like an extra in a low rent sci-fi flick.

I wake up in darkness, and reach over the edge of my mattress, like I have every morning for the past two weeks. I feel around the inky void until I grab hold of a sleek white headset. It looks like a pair of snowboarding goggles, but without the lenses. I tap the "on" button, and the headset glows with a bright blue-green light.

I slip the device on my head and let my eyes adjust to the light—which is now shining straight into my eyes—and groggily stumble to the bathroom. The light obscures my vision, and so I stumble over a boot along the way. When I look in the mirror, I can't help thinking that, in terms of sci-fi cred, I look more SkyMall than Darth Maul.

This has been my new morning routine—a slightly strange, and kind of silly, but earnest (I swear) attempt to reset my body's internal clock so that I can go to bed earlier and wake up earlier the next day. You see, I'm a chronic night owl, often to my detriment; I often can't get to bed before midnight without a little help. Recently, that's meant taking melatonin supplements, a naturally occurring hormone believed to induce sleep in mammals. When I wake up for work, I'm tired as hell.

Photo: Raf Katigbak

The device on my face is called the Re-Timer. It was created by Leon Lack, a clinical psychologist at the Adelaide Institute for Sleep Health in Australia. The Re-Timer is supposed to re-adjust the wearer's circadian rhythms—the 24 hour cycle of chemicals like melatonin and other physiological cues that together determine when you go to sleep and wake up—by shining bright blue and green light into the wearer's eyes.

Researchers believe that light plays the largest role in regulating circadian rhythms related to sleep, and so the idea is that the Re-Timer tricks your brain into thinking it needs to go to sleep earlier or later by mimicking the conditions it's used to in the natural world—sunlight at daybreak, for example. It's basically a SAD lamp that you wear on your face, and retails for $299 USD.

"We have a biological clock, and the master clock is in the brain, in the suprachiasmatic nucleus," which is part of the hypothalamus said Julie Carrier, a professor of psychology at the University of Montreal's Center for Advanced Research in Sleep Medicine. "There are other clocks in the body, we know that, but the master one is in the hypothalamus. And it's a good thing we have these circadian rhythms, because it allows mammals and humans to do the correct action at the same time. For human beings, it's good to be asleep at night, because we don't see much."

Wearing the Re-Timer to work quickly turned my desk into a zoo exhibit, and I was the main attraction: a dude with ominous green lights shining into his eyes

The suprachiasmatic nucleus, or SCN, as it turns out, is connected to your eyes via photoreceptor cells that are sensitive to short wavelength blue and green light, Carrier told me. These cells are used to receiving cues from natural sunlight and communicating them to the SCN, but they'll also respond to artificial light. The idea is that, by wearing a device like the Re-Timer, your circadian rhythms will respond in kind.

"Bright light can be used to shift the timing of the body clock. There's been a lot of research to show that, and ours was actually some of the earliest work in that area," Lack said over a Skype conversation. "One of my students wrote his PhD in 1990 and showed that a single pulse of four hours of bright light at high intensity had the effect to earlier delay the body clock or shift it earlier, depending on when the light exposure occurred."

The Re-Timer is apparently based on this and other academic research spanning the past 25 years, and has a handful of peer-reviewed papers to back it up (most of them co-authored by Lack himself).

Photo: Raf Katigbak

To get to sleep earlier and wake up earlier (my goal), you're supposed to wear the Re-Timer for up to an hour, within a half hour of your normal wake time. According to the company, you should see results after three or four days. The results after this period of time will likely be a change of 20 or 30 minutes in your sleep schedule, Lack said, because the light is less intense than what you see in a lab. However, if the glasses are worn for much longer, those changes could stretch to a couple hours.

You're probably wondering by now: how did it go for me? The most I can say is that results were promising, but inconclusive.

I began wearing the glasses on a Sunday. After several days—occasionally cheating by wearing them later than the recommended half hour after waking up, if I was running late to work—I really couldn't tell if anything was different. If I felt a little more energetic one morning, was it really because of a pricey device? As far as I could tell, I was inconveniencing myself without much benefit.

"Light outside will also be sufficient to achieve some of the effect that you want"

At least my coworkers got a show, since wearing the Re-Timer to work quickly turned my desk into a zoo exhibit, and I was the main attraction: a dude with ominous green lights shining into his eyes.

But then, something strange happened. On Sunday night, exactly a week after I started wearing the glasses, I was overcome by tiredness at 9:30 PM (about three hours shy of my normal bedtime) and went to sleep. I woke up at 5 AM. I initially wrote this off as coincidence, because I'd partied a little too hard over the weekend and not slept much. But on Monday and Tuesday, the phenomenon repeated itself. Was it because of the Re-Timer, or because I was catching up on sleep lost over a couple of weekend nights?

I'm not sure I can say for certain—although, my experience somewhat mimics what Lack found in a 2007 paper published in Sleep and Biological Rhythms. In that study, subjects that received two hours of blue light after waking up for a week straight were able to shift their wake up time back by nearly three hours. However, after the study ended, the change didn't stick.

Coey gets her shine on. Photo: Raf Katigbak

I also learned that going to bed at a reasonable hour just isn't my style. I'm a night owl and I think I like it. But the science behind bright light therapy is solid, Carrier assured me, and according to her, it works.

"[These products] are for sure legitimate," Carrier said. "For most people, they are a good purchase, and they can be very useful during winter. But light outside will also be sufficient to achieve some of the effect that you want."

In the summer, for example, the same effect could likely be achieved by going outside for a run in the morning, Carrier said—or, hell, just standing outside your door and looking around. Whether you shell out for a fancy piece of tech to hack your body's rhythms or go the all-natural route will probably depend on what season it is, and how you feel about looking like an extra from a low-rent Blade Runner remake.

As for me, it really does seem like light, even from an LED, has some sort of tangible effect on your body—but that I already knew. I think I'll just stick with the sun, thanks.